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1 Review of ‘Part I: The Fundamentals’

1.1 Review of the Fundamental Algebraic Definitions

1.1.1 Groups

Group A group is a set G together with a law of composition · : G×G → G which is
associative and has an identity element, and such that every element of G has an
inverse.

An abelian group is a group whose law of composition is also commutative.

Isomorphism An isomorhpism is a bijective homomorphism. An automorphism is an
isomorphism where the domain and range are the same set.

Cosets Let H be a subgroup of a group G, denoted H ≤ G. A left coset is a subset of
the form

aH = {ah|h ∈ H}.

It is easy to show that cosets form equivalence classes and hence partition the group.
This allows us to define the index of a subgroup.

Index of a subgroup Let H ≤ G. The index of H in G, denoted [H : G], is the
number of left cosets of H in G.

Normal subgroup Let N ≤ G. N is a normal subgroup of G, denoted N E G, if for
every a ∈ N and every b ∈ G, the conjugate bab−1 is in N .

It is easy to show that when a subgroup of a given group is normal the product of two
cosets is again a coset, i.e. (aN)(bN) = abN . This has the effect of turning the set of
cosets into a group.

Quotient group Let N E G. Then the quotient group of G relative to N , denoted
G/N , is the set of all cosets of N in G.

If H ≤ G is any subgroup the set of cosets is still denoted G/H, but G/H is only a
group if H is normal.

1.1.2 Fields

Field A field is a set F together with two laws of composition + : F ×F → F ((a, b) ;

a + b) and · : F × F → F ((a, b) ; ab) called addition and multiplication, which
satisfy the following axioms:

1. Addition makes F into an abelian group F+.
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2. Multiplication is associative and commutative and makes F× = F −{0} into
a group.

3. Distributive law: For all a, b, c ∈ F , (a + b)c = ac + bc.

Number field A number field K is a subfield of C.

Characteristic of a field A field F is said to have characteristic p if 1+· · ·+1(p terms) =
0 in F , and if p is the smallest integer with this property. In the case the order is
infinite, i.e. 1 + · · ·+ 1 is never 0 in F , the field is said to have characteristic zero.

Algebraically Closed Field A field F is said to be algebraically closed if every poly-
nomial f(x) ∈ F [x] of positive degree has a root in F .

Of course, the fact that the field C of complex numbers is algebraically closed is called
the Fundamental Theorem of Algebra.

Field extension A field extension K of a field F , denoted K/F , is a field such that
F ⊂ K.

Algebraic and transcendental elements Let K be an extension of a field F and let
α ∈ K. α is algebraic over F if it is the root of some nonzero polynomial with
coefficients in F . An element α is called transcendental over F if it is not algebraic
over F , i.e. it is not the root of any polynomial with coefficients in F .

F-isomorphism Let K and K ′ be field extensions of F . An isomorphism of field
extensions, or F-isomorphism, is an isomorphism ϕ : K → K ′ which restricts to
the identity on the subfield F .

A field extension can always be considered to be an F -vector space. Addition is the
addition law in K and scalar multiplication of an element α of K by an element c of F
is defined to be the product cα formed by multiplying these two elements in K. This
leads us to another important definition.

Degree of a field extenison The degree of a field extension, denoted [K : F ], is the
dimension of K as an F -vector space.

This is a convenient place to introduce the notion of a finite field extension.

Finite extension A field extension K of F is a finite extension iff its degree [K : F ] is
finite.

Algebraic extension An extension K of a field F is an algebraic extension, and K is
said to be algebraic over F , if all its elements are algebraic.
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1.2 The Fundamentals of Field Extensions

Since Galois theory draws much from the theory of groups and of fields we must look
at the important theorems in these areas that Galois theory depends on. This section
is concerned with the results of Field Theory and the following section with those of
Group Theory.

1.2.1 Algebraic Elements

The theory that we will consider here will assume that all fields are number fields.
The entire theory that follows can be broached in a more general context by considering
subfields that are all subfields of some fixed but otherwise arbitrary algebraically closed
field of characteristic zero. This said, some of the theorems as they are stated, including
the fundamental theorem, do hold for such general fields.

Let F be an arbitrary number field and let α1, · · · , αn be arbitrary numbers. Con-
sider all possible fields which are extensions of the field F and contain all the numbers
α1, · · · , αn. The intersection of these fields, which is itself a field, is the minimal exten-
sion of the field F which contains α1, · · · , αn. This minimal extension is denoted by
F (α1, · · · , αn) and is called the extension generated by the numbers α1, · · · , αn. It is
useful to note that it can be shown that F (α1, · · · , αn) = F (α1)(α2) · · · (αn), and so the
extensions produced by adding numbers individually and all together produce the same
field extension.

Let F be an arbitrary field and let α be algebraic over F . Then, by definition, α is a
zero of some polynomial over the field F . The polynomial f(x) with the smallest degree
of all of these polynomials is called the minimal polynomial of the algebraic number α.
This polynomial is irreducible because if it was reducible then α would be a root of a
polynomial of smaller degree than f(x) which contradicts the definition of f(x). Thus
we talk about the irreducible polynomial, or the minimal polynomial, corresponding to
a number α algebraic over F . The unique degree of this polynomial is called the degree
of the algebraic number α over the field F .

The degree has two important properties that should be pointed out.

Theorem 1 If α is algebraic over F , then [F (α) : F ] is the degree of the irreducible
polynomial for α over F .

Theorem 2 Let F ⊂ K ⊂ L be fields. Then [L : F ] = [L : K][K : F ].



1 REVIEW OF ‘PART I: THE FUNDAMENTALS’ 5

I will end this section with two important propositions fundamental to the theory of
field extensions. The first of these guarantees the existence of extensions that contains
a root of an irreducible polynomial.

Theorem 3 If f(x) is an irreducible polynomial with coefficients in a field F , then there
exists an extension K of F in which f(x) has a root.

This theorem is assuming that F is a number field, but there is a formal version of this
theorem that allows you to adjoin a formal root to a given irreducible polynomal. The
last theorem in this section gives the circumstances under which there is an isomorphism
F (α) −→ F (β) which fixes F and sends α to β.

Theorem 4 Let α ∈ K and β ∈ L be algebraic elements of two extension fields of F .
There is an isomorphism of fields

σ : F (α) −→ F (β),

which is the identity on the subfield F and which sends α ; β iff the irreducible poly-
nomials for α and β are equal.

1.2.2 Splitting Fields

Before we continue I must clarify an extra bit of notation that I will be using. In the
formal approach to the theory of polynomials we consider a ring R, which is like a field
but without a multiplicative inverse, with an indeterminate element x added to it. This
forms a ring called a polynomial ring which is denoted R[x]. In our context here the
coefficient ring is actually a field F , which forms a polynomial ring F [x]. So F [x] is the
set of all (formal) polynomials with coefficients in F .

If F , K and L are three fields such that F ⊂ L ⊂ K, then we call L an intermediate
field. If K is an extension of a field F in which a polynomial f(x) in F [x] can be factored
into linear factors and if f(x) cannot be so factored in any intermediate field, then K is
called a splitting field for f(x). It follows from this definition that if K is the splitting
field of f(x), the roots of f(x) generate K. A consequence of this is that [K : F ] is finite.

Theorem 5 If f(x) is a polynomial in F [x], then there exists a splitting field K of f(x).

We now consider a theorem that gives us a better understanding of the structure of
splitting fields.

Theorem 6 Let f be an irreducible polynomial in F [x]. Then f has no multiple root
in any field extension of F unless the derivative f ′ is the zero polynomial. In particular,
if F is a field of characteristic zero, then f has no multiple root.
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1.3 Some Results from Group Theory

This section will briefly go through some of the important theorems from group theory.

1.3.1 Important Theorems for Finite Groups

The number of elements of a finite group G, denoted |G|, is called the order of the
group. It is easy to show that there exists a bijection between the cosets of a subgroup
H in G. This, together with the fact that the cosets partition the group gives us the
important formula,

|G| = |H|[G : H]

called the Counting Formula. Of course this can also be written as |G| = |H||G/H|. As
a consequence of this formula we get a basic theorem of group theory.

Theorem 7 Lagrange’s Theorem: Let G be a finite group, and let H ≤ G. Then the
order of H divides the order of G.

2 A Brief Introduction to Galois Theory

Galois theory is concerned with the study of all the roots of an irreducible polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a0,

and the symmetries among these roots. Thus it naturally involves the theory of field
extensions and groups. The discovery that the relationship between the complete set
of roots of a polynomial could be understood in terms of symmetry came out of the
work of many mathematicians, especially that of Lagrange and Galois [2]. The original
model for this symmetry is complex conjugation, which permutes the two roots ±i of
the irreducible real polynomial x2 + 1, while leaving the real numbers fixed. The group
of symmetries among the roots of this polynomial is clearly S2

∼= C2. We also notice
that complex conjugation is an R-automorphism of C. In general, for a field extension
K/F , the group of all F -automorphisms of K is called the Galois group of the field
extension. We denote this group by G(K/F ). Thus, for the extension R(i), the Galois
group G(R(i)/R) is S2 and hence has order 2.

Theorem 8 For any finite extension K/F , the order |G(K/F )| of the Galois group
divides the degree [K : F ] of the extension.



2 A BRIEF INTRODUCTION TO GALOIS THEORY 7

A finite field extension K/F is called a Galois extension if the order of the Galois
group is equal to the degree:

|G(K/F )| = [K : F ].

Thus, we see that R(i)/R is a Galois extension. If G is a group of automorphisms of a
field K, the set of elements of K which are fixed by all the automorphisms in G forms
a subfield, called the fixed field of G. We will denote the fixed field by KG:

KG = {α ∈ K|ϕ(α) = α for all ϕ ∈ G}.

So the fixed field of G(R(i)/R) is R. Theorem 8 leads to the following corrolary:

Corollary 1 Let K/F be a Galois extension, with Galois group G = G(K/F ). The
fixed field of G is F .

2.1 Quadratic and Biquadratic Extensions

2.1.1 Quadratic Extensions

We will begin with the simplest possible case, that of an extension K/F of degree 2.
Such an extension is generated by any element α of K that is not in F . It is also the
case that α is a root of an irreducible quadratic polynomial

f(x) = x2 + bx + c

with coefficients in F . It is not hard to see that α′ = −b−α is also a root of f and so f
splits into linear factors over K. This, along with theorem 4 gives us a symmetry: the
isomorphism

σ : F (α) −→ F (α′),

which is the identity on F and sends α ; α′. Since either root generates the same
extension (F (α) = K = F (α′)), σ is an automorphism of K.

Since the two roots are not identical (otherwise K = F ), the automorphism is a
permutation of the two roots that is not the identity. This is so since α + α′ = b ∈ F
and σ fixes F . Thus σ2 must be the identity. Thus we see that {1, σ} ⊆ G(K/F )
and |G(K/F )| ≥ 2. By the magic of theorem 8 we see that this implies that {1, σ} =
G(K/F ), so that K is a Galois extension of F. Such extensions K are called quadratic
extensions.
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2.1.2 Biquadratic Extensions

The next simplest example is that of a biquadratic extension. A biquadratic ex-
tension is defined as a field extension K/F such that [K : F ] = 4 and which is generated
by the roots of two irreducible quadratic polynomials with coefficients in F . It can be
shown that every such extension has the form

K = F (α, β),

where α2 = a and β2 = b, and a, b ∈ F .

An important difference between this case and quadratic extensions is that the element
α generates an intermediate field F (α). Now, since K = F (α, β) and [K : F ] = 4, F (α)
has degree 2 over F (by theorem 2), whence β is not an element of F (α). Thus the
polynomial x2 − b is irreducible over F (α). Similarly x2 − a is irreducible over F (β).
Notice also that theorem 2 implies that [K : F (α)] = 2 and so K is a quadratic extension
of F (α). Thus there is an F (α)-automorphism σ that interchanges the roots ±β of x2−b.
Since σ it is an F (α)-automorphism its fixed field is F (α) and so σ also fixes F . Similarly
there is an F (β)-automorphism τ that interchanges the roots ±α of x2−a that is also an
F -automorphism. From this we can now see that τ sends α ; −α and σ sends β ; −β,
from which it follows that στ changes the sign of both roots. Clearly the squares of each
of these maps is the identity, so the four automorphisms {1, σ, τ, στ} form a group of
order 4 that satisfies the relations

σ2 = 1, τ2 = 1, στ = τσ.

This happens to be the Klein four group. Thus {1, σ, τ, στ} ⊆ G(K/F ). Once again, by
the magic of theorem 8 we see that this implies that {1, σ, τ, στ} = G(K/F ), so that K
is a Galois extension of F.

We have seen that quadratic and biquadratic extensions are both Galois extensions.
It also happens to be that case that they are splitting fields of irreducible polynomials
over the base field F . This is evidence of a general pattern expressed by the following
theorem.

Theorem 9 If K is a splitting field of a polynomial f(x) over F , then K is a Galois
extension of F . Conversely, every Galois extension is a splitting field of some polynomial
F [x].

We are now ready to state the fundamental theorem.
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2.2 The Fundamental Theorem of Galois Theory

We are now in a position to begin to understand a beautiful theorem called The
Fundamental Theorem of Galois Theory.

Theorem 10 The Fundamental Theorem: Let K be a Galois extension of a field F ,
and let G = G(K/F ) be its Galois group. The function

H ; KH

is a bijective map from the set of subgroups of G to the set of intermediate fields F ⊂
L ⊂ K. Its inverse function is

L ; G(K/L).

This correspondence has the property that if H = G(K/L), then

[K : L] = |H|, and hence [L : F ] = [G : H].

2.3 Cubic Equations

With the fundamental theorem in hand, we will now apply it to examine the properties
of the splitting fields of cubic equations

f(x) = x3 + a2x
2 + a1x + a0.

There is a useful trick that allows us to simplify the form of cubic equations. Using the
substitution x ; x− a2/3, the general cubic above becomes

f(x) = x3 + px + q,

where p and q are elements of F . Now let K be a splitting field for f(x) over F and let
α1, α2, α3 be the roots of f in K, in arbitrary order, so that we have

f(x) = x3 + px + q = (x− α1)(x− α2)(x− α3).

By expanding the right side we can see that

α1 + α2 + α3 = 0,

which implies that the third root α3 is in the field generated by the other two. Supposing,
now, that f(x) is irreducible, this implies that there is a chain of fields

F ⊂ F (α1) ⊆ K,

with K = F (α1, α2) = F (α1, α2, α3). Denoting F (α1) by L, we have two distinct cases:

L = K or L < K.

The former case occurs when α2 and α3 can be written in terms of α1 and elements of
F , whereas the latter occurs when there is no such expression.
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In L[x], f(x) has the factor (x− α1) so that

f(x) = (x− α1)h(x),

where h(x) is a quadratic polynomial with coefficients in L. From the ‘splitting equation’
of f above, we see that h(x) = (x − α2)(x − α3) in K[x]. Thus, we can now see that
L < K iff h(x) is irreducible over L. In this case, since h is a quadratic polynomial
irreducible over L, L(α2) = K has degree 2 over L. In either case, because f(x) is
irreducible over F , [L : F ] = 3 by theorem 1. This finally gives us

[K : F ] =
{

3 if L=K
6 if L<K .

From theorem 8 the order of the Galois group G = G(K/F ) is equal to the degree
[K : F ], so K/F is a Galois extension. It can be shown that F -automorphisms permute
the roots of the irreducible polynomial, and that the only F -automorphism that fixes all
the roots is the identity. This implies that G ⊆ S3, which has order 6. So if [K : F ] = 6,
G = S3 and if [K : F ] = 3, then G = A3, the only subgroup of S3 of order 3. In this
latter case there are no intermediate fields (A3 has no subgroups) but there are in the
former case and we can determine these using the fundamental theorem.

S3 has three conjugate subgroups of order 3 and one subgroup of order 3, namely A3.
There are three obvious intermediate fields F (α1), F (α2), F (α3), which are isomorphic
but not equal subfields of K, which must correspond to the three subgroups of order 2.
The field corresponding to A3 is more difficult to find, however. From the fundamental
theorem we know that G(K/L) = A3, so [K : L] = 3 and [L : F ] = 2 which implies
that L is a quadratic extension of F , which can be obtained by adjoining a square root.
Thus L, and hence K, contains a square root δ of an element of F . According to the
fundamental theorem L is the fixed field of A3, so an even permutation of the roots
leaves δ fixed, while an odd one does not. Thus suggests the choice

δ = (α1 − α2)(α1 − α3)(α2 − α3).

To see that this is the correct choice we note that δ is not fixed by every element of
G(K/F ) = S3 so δ /∈ F . On the other hand δ2 is fixed by every permutation, so by
corollary 1 δ2 ∈ F .

2.4 A More Complete Fundamental Theorem

Theorem 11 The Fundamental Theorem: Let K be a Galois extension of a field F ,
and let G = G(K/F ) be its Galois group. The function

H ; KH
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is a bijective map from the set of subgroups of G to the set of intermediate fields F ⊂
L ⊂ K. Its inverse function is

L ; G(K/L).

This correspondence has the following properties:

1. if H = G(K/L), then [K : L] = |H|, and hence [L : F ] = [G : H].

2. L is a Galois extension of F iff H £ G. In such a case G(L/F ) ∼= G/H.
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